Principles of Macroeconomics: Introduction to Economic Growth Class 3

Alex Houtz September 2, 2025

University of Notre Dame

Overview

- ► Announcements:
 - You should be able to do LC 7 and GH 7 (due September 12th at 11:59pm)
 - Presentations
- ► Topics:
 - Living Standards Over Time
 - Analytical Tools for Growth
- ► Readings:
 - Chapter 9.1 (Comparing Economies), chapter 9.2 (Sources of Long-Run Growth)

What's Happened Over the Last 100 Years

- ► In 1900, the US had:
 - Life expectancy of < 50 years
 - 10% of infants dying before 1
 - ullet > 90% of households having no electricity/telephone/ or car
 - ullet < 10% of adults completing high school
- ▶ In 2025, the US has:
 - Life expectancy of > 78 years
 - < 1% of infants dying before 1
 - 100% of households have access to electricity (World Bank)
 - $\bullet~>90\%$ of adults completing high school
 - AND: access to air-conditions, dishwashers, passenger planes, skyscrapers, iPads, Al

What's Happened Over the Last 100 Years

- ► In 1900, the US had:
 - Life expectancy of < 50 years
 - 10% of infants dying before 1
 - $\bullet~>90\%$ of households having no electricity/telephone/ or car
 - ullet < 10% of adults completing high school
- ► In 2025, the US has:
 - Life expectancy of > 78 years
 - ullet < 1% of infants dying before 1
 - 100% of households have access to electricity (World Bank)
 - ullet > 90% of adults completing high school
 - AND: access to air-conditions, dishwashers, passenger planes, skyscrapers, iPads, AI

Another View of Progress

- ▶ In 1836, Nathan Rothschild was the richest person in the world
 - Perspective: he was worth 0.62% of Britain's GDP at the time
- ► Rothschild died from a bacterial infection
 - $\bullet~<\$50$ of penicillin today would have likely been enough to save him

How Will We Measure Progress?

► Remember real GDP? What is real GDP?

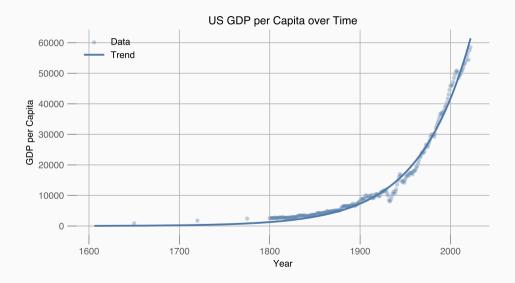
How Will We Measure Progress?

- ► Remember real GDP? What is real GDP?
- ► We now want to account for real GDP per person:

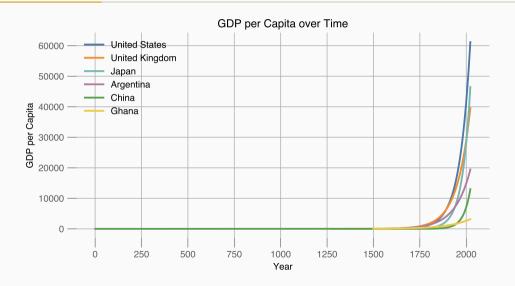
$$\mathsf{RGDP}_{\mathsf{person}} = \frac{\mathsf{RGDP}}{\mathsf{Population}}$$

- ► We will use this as our "standard of living"
 - ullet \uparrow RGDP_{person} \longrightarrow \uparrow consumption
 - \uparrow RGDP_{person} \longrightarrow \uparrow Health
 - $\bullet \ \uparrow \mathsf{RGDP}_{\mathsf{person}} \ \longrightarrow \ \uparrow \mathsf{Life} \ \mathsf{Expectancy}$
 - \uparrow RGDP_{person} \longrightarrow \uparrow "Happiness"

The US: $1800 \approx \$2500$ to $2022 \approx \$60,000$



Maybe it's just the US?



Growth Rates

- ► Growth rate just means percentage change
- ► For example: let *y* be RGDP per person
- ▶ The growth rate of y from 2022 to 2023 would be:

- ▶ Suppose that the growth rate of y is g. Then: $y_{t+1} = y_t(1 + g_t)$
- ► Essentially, we need two of the three variables in that equation:
 - If we have y_t and y_{t+1} , we can get g_t
 - If we have y_t and g_t , we can get y_{t+1}

An Example

- ► World population was 6 billion in 2000
 - Set 2000 to be t = 0
 - Set 6 billion to be L₀
- ► Suppose that population growth is 2% every year for the next 100 years
- ▶ Question: What will the population be in 2100?

Constant Growth Rule

► We can use something called the Constant Growth Rule:

$$L_t = L_0(1 + g_L)^t \ \forall \ t = \{0, 1, \dots, \infty\}$$

▶ So we know L_0 and we know n – we can easily solve for L_t :

$$L_t = 6$$
 billion $\times (1 + 0.02)^{100} \approx 43.5$ billion

▶ Now what if we knew L_{100} and L_0 ?

► We could solve for *n*:

$$egin{align} L_{100} &= L_0 (1+g_L)^{100} \ rac{L_{100}}{L_0} &= (1+g_L)^{100} \ \left(rac{L_{100}}{L_0}
ight)^{rac{1}{100}} -1 = g_L \ \end{array}$$

$$\#$$
 of years to double $=\frac{70}{\text{annual growth rate}}$

- ► Suppose that population grows at 2% a year. Then population takes 35 years to double
 - We can check (do you remember your In rules?):

$$\frac{L_t}{L_0} = (1.02)^t$$

$$\frac{2L_0}{L_0} = (1.02)^t$$

$$\ln(2) = t \ln(1.02)$$

$$35 \approx t$$

- ▶ Lesson: Small difference in growth rates → big effects on time to double
 - 1% growth rate \longrightarrow 70 years to double
 - 2% growth rate \longrightarrow 35 years to double
 - ullet 3% growth rate \longrightarrow 23 years to double
- ➤ So a 1pp change in the growth rate could cause population to double once in your lifetime or 8x in your lifetime!

Rule of 70 Derivation

► Start from:

$$2=(1+g)^t$$

► Use natural logs:

$$\ln(2) = t \ln(1+g)$$

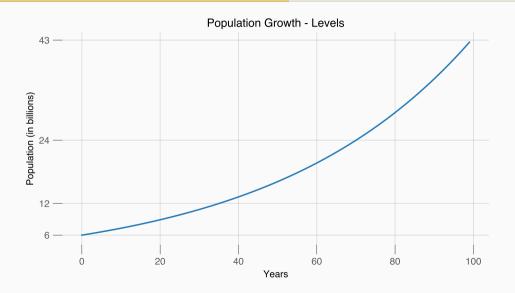
 $lackbox{ We can approximate } \ln(1+g) \text{ as } tg \text{ for small } g$

$$tg = \ln(2)$$
$$t \approx \frac{0.7}{g} = \frac{70}{100g}$$

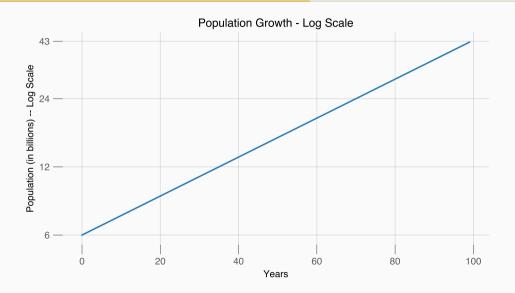
Ratio Scale

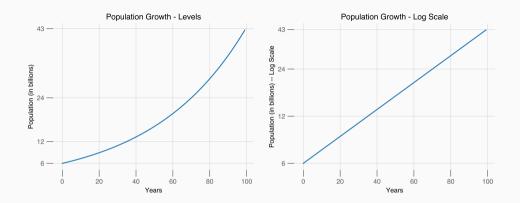
- ▶ Notice that we only need growth rates for time to double levels are not needed!
- ► We can then plot two ways:
 - 1. Plot the level
 - 2. Plot the natural logs this makes the ratio between doubling times equidistant (e.g. if we have "1, 2, 4, 8", log scale makes the distance between 1 and 2, 2 and 4, and 4 and 8 equal)

Option 1



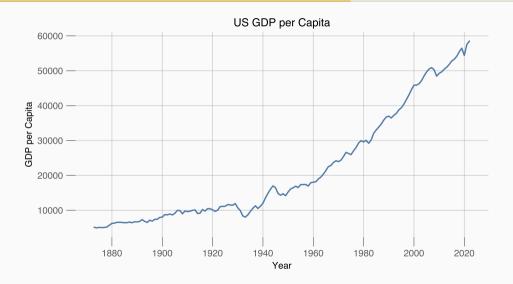
Option 2



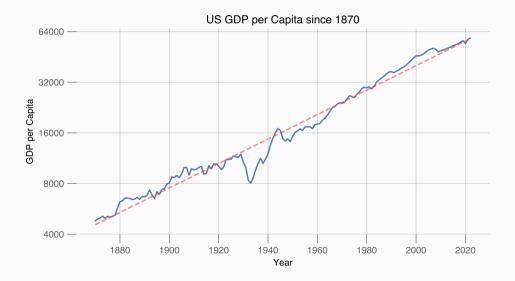


- ► The log-scale's slope is the growth rate
- ► Either way, we get the same total population at the end!

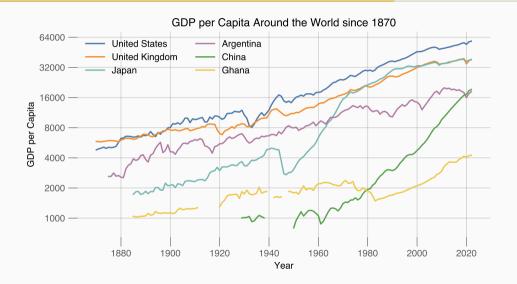
Returning to US RGDP per Capita



Almost 2% (1.8%) on Average!



Are Other Countries this Stable?



Practice Problems

- (1) Suppose that country A grows at 1.8% a year and, in year 0, has a GDP per capita of \$60,000. Suppose that country B grows at 4% a year and, in year 0, has a GDP per capita of \$15,000. In how many years will country B catch up to country A?
- (2) Suppose country C grows at 1.2% a year and starts at a GDP per person of \$55,000. Suppose country D starts at a GDP per person of \$20,000. At which constant growth rate will country D overtake country C in 40 years?

(1) Remember the formula for constant growth: $y_A(t) = y_A(0)(1 + g_A)^t$. We want to know when $y_A = y_B$. So set the growth formulas equal to each-other:

$$y_A(0)(1+g_A)^t = y_B(0)(1+g_B)^t$$
 $\ln(y_A(0)) + t \ln(1+g_A) = \ln(y_B(0)) + t \ln(1+g_B)$
 $\ln(y_A(0)) - \ln(y_B(0)) = t (\ln(g_B) - \ln(g_A))$
 $\frac{\ln(y_A(0)) - \ln(y_B(0))}{\ln(g_B) - \ln(g_A)} = t$
 $64.84 \approx t$

(2) We can use the same formula, but now we are solving for g_D :

$$y_C(0)(1+g_C)^t = y_D(0)(1+g_D)^t$$
 $\frac{y_C(0)}{y_D(0)}(1+g_C)^t = (1+g_D)^t$
 $\left[\frac{y_C(0)}{y_D(0)}\right]^{\frac{1}{t}}(1+g_C)^t = 1+g_D$
 $\left[\frac{y_C(0)}{y_D(0)}\right]^{\frac{1}{t}}(1+g_C) - 1 = g_D$
 $3.79\% \approx g_D$

Practice Problems

- (3) Suppose an economy experiences a recession once a decade where the GDP growth rate is -1%. What constant interest rate must the economy grow at for the other nine years for the economy to arithmetically average 1.8% growth for the decade?
- (4) Suppose a benevolent social planner can select between two growth plans for the economy. In growth plan A, the planner makes the economy grow at 1.8% per year, every year, for 50 years. In growth plan B, the planner makes the economy grow at the rate from problem 3 for nine years every decade, but allows GDP per capita to fall 1% in the tenth year. The planner repeats this for 50 years. Which plan is better?
- (5) At which growth rate under plan B would we be indifferent between plan A and plan B?

(3) Use the arithmetic average:

$$\frac{9 \times r + (-1)}{10} = 1.8$$
$$9 \times r = 18 + 1$$
$$r = \frac{19}{9} \approx 2.11\%$$

(4) Let GDP per capita in period 0 be unity, without loss of generality. Then growth after 50 years under plan A is:

$$y_A(50) = (1 + 0.018)^{50} \approx 2.44$$

Under plan B, growth each decade is:

$$y_B(10) = (1.0211)^9 \times (1 - 0.01)^1 \approx 1.195$$

Compound this five times:

$$y_B(50) = 1.195^5 \approx 2.43$$

So there is a penalty to volatility

(5) Set the growth formulas equal:

$$1.018^{50} = ((1+r)^9 \times 0.99)^5$$
$$1.018^{10} = (1+r)^9 \times 0.99$$
$$\left(\frac{1.018^{10}}{0.99}\right)^{\frac{1}{9}} - 1 = r$$
$$2.12\% \approx r$$

Summary

- ▶ Most of human history, all humans have lived in relative poverty
- ► Lots of progress in the last century
- ► Exponential growth is awesome
- ► Are other countries "catching up"? Why are some countries growing and some not?
- ► Thursday: Sources of Long Run Growth
 - Read chapter 9.2